Автономная некоммерческая общеобразовательная организация "Физтех-лицей"

(АНОО «Физтех-лицей» им. П.Л. Капицы)

«Старт в инновации»

«Очистка воздуха от токсичных газообразных веществ с помощью сорбентов нового поколения»

Выполнил: Соловьёв Иван, 8В класс Руководители: Рябинина О.А., Соловьёв Е.А.

СОДЕРЖАНИЕ:

Аннотация проекта

1. ЛИТЕРАТУРНЫЙ ОБЗОР

- 1.1. Адсорбция. Адсорбционная очистка воздуха
- 1.2. Виды современных сорбентов
- 1.3. Аппаратурное оформление процесса адсорбции
- 1.4. Заключение к литературному обзору

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

- 2.1. Методика проведения экспериментов
- 2.2. Экспериментальная установка
- 2.3. Результаты экспериментов

Выводы

Список источников

Аннотация проекта:

Область исследования: физическая химия.

Цель работы: исследование процесса сорбционной очистки воздуха от токсичных газообразных веществ, разработка новой технологии очистки воздуха с помощью сорбентов нового поколения.

Задачи:

- 1) Выполнить обзор литературы по современным сорбентам для очистки воздуха от газообразных загрязнителей.
- 2) Изучить существующие технологии адсорбционной очистки воздуха, аппараты для адсорбции.
- 3) Выполнить экспериментальное исследование: сконструировать аппарат, подобрать источники загрязнения, выбрать несколько видов сорбентов, сравнить сорбенты по эффективности и их стоимости, подобрать способ измерения концентрации загрязнителя в воздухе.

Актуальность работы:

В настоящее время в городах существует множество источников загрязнений воздуха различными дурно пахнущими и токсичными газообразными веществами. Данные вещества пагубно влияют на здоровье живых существ (в том числе растений) и создают дискомфорт.

Существуют промышленные воздухоочистительные установки, основанные на процессе адсорбции, но отсутствуют относительно небольшие и при этом достаточно эффективные и доступные очистители для домашнего использования. Поэтому разработка новых бытовых устройств является актуальной на сегодняшний день задачей.

Методы исследования: анализ научно-технической литературы и Интернет-ресурсов, экспериментальные исследования.

1. Литературный обзор

1.1. Адсорбция. Адсорбционная очистка воздуха

Адсорбция (лат. ad на. при. B: sorbeo поглощать) — самопроизвольный процесс увеличения концентрации растворённого вещества поверхности раздела y конденсированная двух фаз (твёрдая фаза жидкость, фаза газ) вследствие нескомпенсированности сил межмолекулярного взаимодействия на разделе фаз. Адсорбция является частным случаем сорбции, процесс, обратный адсорбции — десорбция [1].

Метод адсорбции основан на способности поверхности твердых адсорбентов (поглотителей) избирательно поглощать и концентрировать отдельные компоненты газопаровой смеси. Адсорбция может быть физической, промежуточной (активированной) и химической. Достоинство физической адсорбции — обратимость процесса. Это позволяет относительно просто проводить регенерацию адсорбента, обычно методом нагрева при повышенной температуре, так как физическая адсорбция сильно снижается с увеличением температуры. Процесс химической адсорбции, как правило, необратим, и регенерировать адсорбент не удается.

В качестве адсорбентов часто используют мелкодисперсные порошки активированного угля, оксида алюминия, глинозема, силикагеля, цеолитов и т. п. Основным параметром при выборе адсорбента является его адсорбционная способность, т.е. количество вещества, поглощаемое единицей массы адсорбента или площади его поверхности.

1.2. Виды современных адсорбентов

Сорбенты (от лат. *sorbens* поглощающий) твердые тела или жидкости, избирательно поглощающие из окружающей среды газы, пары или растворённые вещества. В зависимости от характера сорбции различают абсорбенты — тела, образующие с поглощённым веществом твёрдый или жидкий раствор, адсорбенты — тела, поглощающие вещество на своей (обычно сильно развитой) поверхности, и химические поглотители, которые связывают поглощаемое вещество, вступая с ним в химическое взаимодействие. Отдельную группу составляют ионообменные сорбенты (иониты), поглощающие из растворов ионы одного типа с в раствор эквивалентного количества ионов другого Широко вылелением типа. используют активированный уголь, силикагель, оксид алюминия, кремния, диоксид различные ионообменные смолы, дибутилфталат и другие. Далее будут рассматриваться только твердые сорбенты.

Твердые сорбенты бывают гранулированными и волокнистыми. Гранулированные сорбенты (рисунок 1) представляют собой порошок или гранулы природного или искусственного происхождения. Например, диоксид кремния относится к этой группе сорбентов.

Рисунок 1 – гранулированный сорбент

Волокнистые сорбенты (рисунок 2) представляют собой похожую на вату массу из синтетического полимерного волокна. Например, волокнистые сорбенты делают из полипропилена. Волокнистые сорбенты имеют большую площадь поверхности по сравнению с

гранулированными. Также их можно использовать повторно. Поэтому волокнистые сорбенты чаще используют для промышленной очистки сточных вод, печных газов, сбора нефтепродуктов и других загрязняющих веществ.

Рисунок 2 – волокнистый сорбент

По происхождению сорбенты бывают природными и синтетическими. К природным сорбентам относится активированный уголь, который получают из древесного угля, ореховой скорлупы и других материалов естественного происхождения.

К синтетическим сорбентам относится диоксид кремния. Его получают при сжигании кремния при температуре выше $400\,^{\circ}\mathrm{C}$.

По способности впитывать воду сорбенты бывают гидрофильными и гидрофобными.

Гидрофильные сорбенты связывают воду и растворенные в ней вещества. Их применяют для осушения воздуха, удаления нежелательных веществ из раствора. Пример гидрофильного сорбента — силикагель. Пакетики с этим сорбентом кладут в упаковку товаров для осушения воздуха.

Гидрофобные или олеофильные сорбенты впитывают масла и нефтепродукты, но отталкивают воду. Эти вещества применяют для очистки воды при утечке нефти, мазута и других нефтяных продуктов, в качестве жироулавливателя в бытовых и промышленных фильтрах воздуха.

К гидрофобным сорбентам относятся многие синтетические полимеры. Среди естественных сорбентов гидрофобными или олеофильными свойствами обладает торф.

1.3. Аппаратурное оформление процесса адсорбции

Промышленные адсорбционные процессы чаще всего реализуются в неподвижном движущемся или псевдоожиженном слое адсорбента. Процесс адсорбции в неподвижном слое является периодическим, в движущемся или псевдоожиженном слое — непрерывным. Основное преимущество адсорбции в неподвижном слое заключается в минимальном механическом истирании адсорбента. В движущемся плотном слое истирание адсорбента значительно больше и возрастает в условиях псевдоожиженного слоя вследствие взаимодействия частиц адсорбента друг с другом и с внутренними поверхностями аппарата. Наибольшее распространение в промышленности находят вертикальные и горизонтальные адсорберы с неподвижным слоем адсорбента.

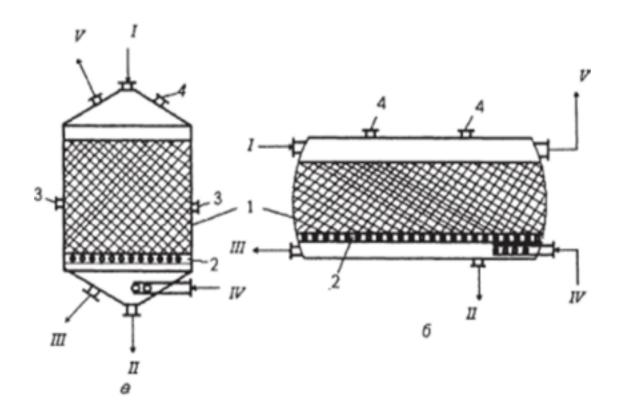


Рисунок 3 — Принципиальные схемы адсорберов: **a** — вертикальный адсорбер **б** — горизонтальный адсорбер

Вертикальные адсорберы применяют для адсорбции газов в случае малой и средней производительности. Для обработки больших объемов газов (порядка 30000 м3/ч и выше) используют горизонтальные кольцевые адсорберы, обладающие незначительным И гидравлическим сопротивлением. Несмотря на периодичность работы аппаратов с неподвижным слоем адсорбционные установки работают в циклично-непрерывном режиме, благодаря включению нескольких адсорберов. Причем определяется продолжительностью адсорбционно-десорбционного цикла.

Менее распространены в средней и малой промышленности кольцевые и горизонтальные адсорбционные системы, использующиеся, в основном, в секторах крупной промышленности. Широкое применение такие установки находят в нефтегазовой, химической, пластмассовой и нефтехимической отраслях, где имеется потребность в тонкой очистке больших объемов газа от токсических и / или нежелательных включений.

Адсорберы иногда называют также «фильтры-поглотители» и применяют для очистки воздуха от углекислого газа. В качестве сорбентов-поглотителей при этом часто применяют молекулярные сита (цеолиты). Такие аппараты зарекомендовали себя как устройства для очистки от неприятных запахов, дыма, при очистке воздуха.

Фильтры-адсорберы применяются в том числе для очистки вентиляционного воздуха канализационных насосных станций и других участков очистных сооружений, использующие сорбционно-каталитический метод очистки. В качестве сорбента используется сорбент в виде активированного угля, импрегнированного йодидом калия не менее 2% (обладает высокой каталитической способностью) и прочими добавками для осаждения сероводорода и прочих дурно пахнущих веществ [4].

Такие адсорберы имеют относительно небольшие габаритные размеры и изготавливаются из нержавеющей стали (рисунок 4).

Рисунок 4 – адсорбер из нержавеющей стали

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

2.1. Методика проведения экспериментов

Оборудование:

- 1) Экспериментальная установка (очистительный аппарат).
- 2) Фильтры тканевые с адсорбентами внутри (рисунок 5).
- 3) Прибор для измерения концентрации токсичных веществ в воздухе (газоанализатор).

2.1.1. Сорбенты

В качестве сорбентов для данной работы применялись активированный уголь, нановолокнистый углерод (НВУ), цеолит природный, а также при проведении экспериментов использовалась смесь всех этих трёх сорбентов.

Активированный уголь - пористое вещество, которое получают из различных углеродосодержащих материалов органического происхождения: древесного угля, каменноугольного кокса, нефтяного кокса, скорлупы кокосовых орехов и других материалов. Содержит огромное количество пор и поэтому имеет очень большую удельную поверхность на единицу массы, вследствие чего обладает высокой адсорбционной способностью [2].

На рисунке 6 показана фотография приготовленного нами адсорбента из таблеток активированного угля.

Рисунок 5 – фильтры с адсорбентами

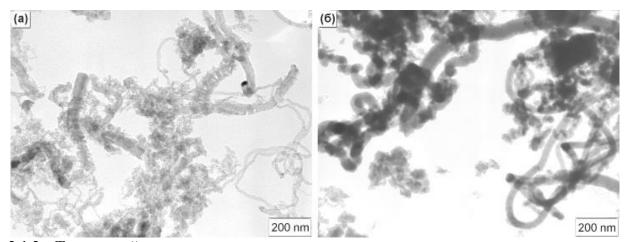
Рисунок 6 – активированный уголь (в гранулах)

Цеолит природный — минерал, в структуру которого входят алюмосиликаты натрия и кальция, обусловливающие его уникальные свойства: удивительную адсорбирующую способность, возможность поглощения больших объемов воды, селективный ионный обмен.

На рисунке 7 показана фотография приготовленного нами адсорбента из природного цеолита.

Рисунок 7 – цеолит природный (в гранулах)

Углеродные нановолокна (НВУ) — углеродные цилиндрические наноструктуры, представляющие собой сложенные стопкой слои графена в виде конусов, «чашек» или пластин. Углеродные нановолокна представляют собой класс таких материалов, в которых изогнутые графеновые слои или наноконусы сложены в форме квази-одномерной нити, чья внутренняя структура может быть охарактеризована углом а между слоями графена и осью волокна.


На рисунке 8 показана фотография гранул нановолокнистого углерода, полученного в лаборатории НГТУ (г. Новосибирск).

На рисунке 9 показаны микрофотографии углеродных нановолокон [3].

Рисунок 8 – Внешний вид гранул НВУ

Рисунок 9 – электронная микроскопия гранул НВУ (размер волокон около 200 нм)

2.1.2. Токсичный загрязнитель воздуха

В качестве загрязнителей использовались пары ацетона.

Ацетон - бесцветная летучая жидкость с характерным запахом. Неограниченно смешивается с водой и полярными органическими растворителями, также в ограниченных пропорциях смешивается с неполярными растворителями [5].

Ацетон сравнительно малотоксичен. Нелсон и др. нашли, что максимально допустимая концентрация ацетона в воздухе при 8-часовом воздействии составляет 0,02%. Дринкер и Кук считают, что максимально допустимая концентрация ацетона равна 0,05–0,25%. Смит и Майерс приводят случаи острого отравления парами смеси ацетона и бутанона при концентрациях порядка 0,1%. Неопубликованные исследования Штернера, Оглезби и Фассета показали, что из всех растворителей, применяемых в промышленности, ацетон является одним из наименее токсичных и в этом отношении вполне сравним с этиловым спиртом. В настоящее время максимально допустимой концентрацией принято считать 0,1%. Пребывание в течение короткого времени в атмосфере, в которой концентрация ацетона намного превышает указанную, не причиняет вреда [5].

2.1.3. Измерение концентрации загрязнителя

Для измерения концентрации загрязнителя в воздухе до и после очистки применялся высокочувствительный газоанализатор для бытового использования KANGWF JSM-131SC (рисунок 10).

Рисунок 10 - газоанализатор

2.2. Экспериментальная установка

Установка включает в себя: адсорбер, устройство прокачивания воздуха через адсорбер, подставку для их размещения.

Адсорбционная установка (адсорбер) — аппарат для очистки воздуха путем адсорбции, представляет собой емкость, заполненную адсорбентом. Загрязненный поток газа подается под давлением, либо втягивается потоком воздуха на рабочую поверхность, очищенный газ выводится через патрубок в верхней части аппарата. Стоит отметить, что поглощающая способность адсорбера ограничена, тут можно провести аналогию с фильтром, который со временем забивается. Для достижения непрерывной работы существуют сдвоенные адсорбционные установки, которые состоят из двух емкостей, работающих поочередно. Пока в одной емкости очищается газ, в другой регенерирует адсорбент и наоборот.

В процессе работы адсорбера адсорбент насыщается и перестает поглощать токсичные вещества. Происходит дезактивация адсорбента. Для того чтобы снова запустить процесс, производят регенерацию (восстановление) его первоначальных свойств и способности поглощать токсичные вещества.

Адсорбер представляет собой горизонтальный аппарат, изготовленный из пластмассовых канализационных труб, включающий в себя блок подмешивания загрязнителя, блок размещения сорбентов. Сорбенты помещались в специальные резервуары, изготовленные из пластмассовых капсул, закрытые с двух сторон проницаемой для воздуха тканью.

Устройство прокачивания воздуха представляет собой осевой вентилятор, соединённый с адсорбером.

Принцип работы установки заключается в следующем. Поток воздуха, создаваемый вентилятором за счёт разрежения, прокачивается через блок подмешивания загрязнителя и далее поступает в блок размещения сорбентов, где происходит физический процесс адсорбции, то есть поглощения загрязнителя в порах соответствующего сорбента. Далее очищенный воздух проходит через вентилятор и отводится в атмосферу.

На рисунке 11 представлена фотография установки.

Рисунок 11 – экспериментальная установка

2.3. Результаты экспериментов

В ходе работы была выполнена серия экспериментов по измерению концентрации паров ацетона на выходе установки с применением различных адсорбентов (рисунок 13). Подготовленный образец загрязнителя (ватный диск, пропитанный ацетоном) помещался внутрь соответствующего отсека установки перед отсеком с адсорбентом. В начале была измерена концентрация паров ацетона на выходе без очистки. На рисунке 12 показан процесс подготовки пробы загрязнителя.

Полученные результаты измерений сведены в таблицу 1. На рисунке 14 представлена гистограмма, показывающая степень очистки различных адсорбентов в процентах, вычисленных по формуле:

$$E = \frac{C_{BX} - C_{BbIX}}{C_{BX}}, \%$$

Рисунок 12 – Подготовка пробы загрязнителя

Рисунок 13 – измерение концентрации загрязнителя

Таблица 1: Результаты экспериментов

Концентрация	Сорбенты			
загрязнителя, ppm	1	2	3	4
Ацетон	Цеолит	Активированный уголь	НВУ	Смесь всех трёх сорбентов
4,734	3,371	2,863	2,825	2,213
4,601	3,141	2,637	2,497	2,247
		2,841	2,487	2,827
среднее значение, ppm				
4,646	3,235	2,759	2,582	2,408
	Степень очистки, %			
	30,4	40,6	44,4	48,2

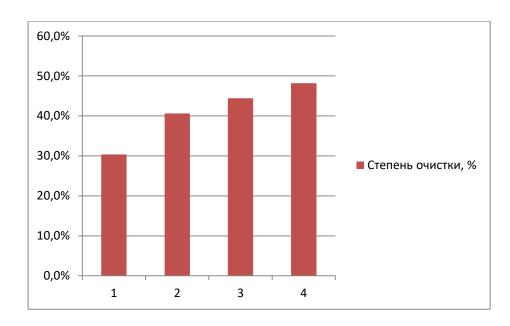


Рисунок 14 – гистограмма степени очистки адсорбентов

выводы

Таким образом, в результате экспериментальных исследований было установлено, что самым эффективным из трёх рассмотренных адсорбентов оказался нановолокнистый углерод, который обеспечил очистку воздуха от паров ацетона на 44,4%. Также можно рекомендовать к применению смесь из всех трёх данных адсорбентов. Хуже всех поглощает пары ацетона природный цеолит (30,4%).

СПИСОК ИСТОЧНИКОВ

Литература:

- 1. Ю.И. Дытнерский Основные процессы и аппараты химической технологии.
- 2. А.Г. Касаткин Основные процессы и аппараты химической технологии.
- 3. Е.А. Соловьёв Получение водорода и нановолокнистого углерода селективным каталитическим пиролизом легких углеводородов.

Интернет-ресурсы:

- 4. https://gas-eco.ru/adsorbery/
- 5. https://wiki2.org/ru/Ацетон